RESPLENDENCY AND RECURSIVE DEFINABILITY IN ω -STABLE THEORIES

BY STEVEN BUECHLER[†]

Dedicated to the memory of Abraham Robinson on the tenth anniversary of his death

ABSTRACT

We prove Theorem A. Every resplendent model of an ω -stable theory is homogeneous. As an application we obtain Theorem B. Suppose T is ω -stable, $M \models T$ is recursively saturated and $p \in S(M)$ is such that for all finite $\bar{m} \in M$, $p \mid \bar{m}$ is realized in M. Then there is a $\bar{c} \in M$ and a definition d of p over \bar{c} such that d is recursive in $t(\bar{c}/\varnothing)$.

In [1] we proved a "non-recursive" version of Theorem A: Every relation-universal model of an ω -stable theory is saturated. We also showed that Theorem A follows from Theorem B. In this paper we give a direct proof of Theorem A. Theorem B then follows from results found in [2] and [3]. We refer the reader to [1] for the motivation behind the theorems of this paper.

Throughout this paper T will denote an ω -stable theory in a finite language. For the most part, our notation is as found in [5]. As in [1], if c is a finite sequence in the monster model, we let T(c) denote the theory in a language containing constants for c which consists of $\{\varphi(c): \models \varphi(c), \varphi \in L\}$. Finite sequences of elements are denoted by a, b, \ldots , or by \bar{a}, \bar{b}, \ldots , when we want to emphasize that they are sequences. Both $\varphi(b)$ and $\models \varphi(b)$ mean that $\varphi(b)$ holds in the monster model.

We will assume a basic knowledge of stability theory but will give references to statements in [5] or [9] where appropriate. References to statements like A.5, B.10, D.4, etc., always refer to results in [5]. More specifically, we make critical use of the notion of average type of a set of indiscernibles (see [9, p. 88]) and the notion of a strongly regular type. There are several equivalent definitions of strong regularity. We will use the following (see D.13 and D.16).

¹Research partially supported by NSF grant #MCS 8202294. Received May 25, 1983 and in revised form January 31, 1984 DEFINITION. Let p be stationary with $\varphi \in p$. We say p is strongly regular via φ if there are models M, N with $N \supset M \supset \text{dom } p$ and an $a \in N \setminus M$ such that $t(a/M) = p \mid M$ and for all $b \in N \setminus M$ $\varphi(b)$ implies $t(b/M) = p \mid M$.

Hereafter, we will write "p is SR via φ " for "p is strongly regular via φ ".

In this paper it is important to bear in mind that strong regularity is a property of the pair (p, φ) . The usual situation is when p and φ have the same Morley rank but this is not required in the above definition. For example, consider a model M of the theory with one equivalence relation with infinitely many infinite classes. Let $q = \{E(x, a)\}$ for some $a \in M$. Then q is SR via x = x even though q forks over \emptyset . This example also shows that one formula may "generate" more than one SR type since the unique type over \emptyset is SR via x = x.

The next lemma indicates what is implied when p forks over dom φ . It is never used explicitly but is the motivation behind the main technical lemma, Lemma 5.

LEMMA 1. Suppose p is SR via φ and dom $\varphi = c$. If p $\not\perp c$ then p does not fork over c.

PROOF. Suppose towards a contradiction that p forks over c. As types in ω -stable theories are based on finite sets, we may assume that $b = \operatorname{dom} p$ is finite. It is easy to show that we may choose M, N, and a witnessing the strong regularity of p such that M is a \aleph_0 -saturated and N is prime over $M \cup a$. Then (1) for every $e \in N \setminus M$, $\varphi(e)$ implies $e \models p \mid M$.

Let $b' \in M$ be such that $b \stackrel{\circ}{=} b'(c)$ and $b' \downarrow_c b$; $p' = p_{b'}$. By C.6(i) $p \not\perp p'$. Hence $p' \mid M \not\perp p \mid M$. As $p' \mid M$ is also SR by D.18 it is realized by some $e \in N$. By (1) e must also realize $p \mid M$. However, $b \downarrow_{b'} e$ since $M \downarrow_{b'} e$. Since $b \downarrow_c b'$ we conclude, by the transitivity of nonforking, that $b \downarrow_c e$, contradicting that p forks over c. This proves the lemma.

We will also refer to the dimension of a type. If p is strongly regular and $A \supset \text{dom } p$ then $\dim(p, A)$ is the cardinality of a maximal independent subset of p(A). (See page D-5.) Usually we only refer to dimension for types of weight 1. However, for any type p and $A \supset \text{dom } p$, $\dim(p, A)$ is well-defined when p(A) contains an infinite independent subset and T is superstable. We may refer to the dimension of an arbitrary type under these conditions.

In our proof of Theorem A, we never explicitly mention defining schema. Proofs of results found in [1] show the resplendent model M will be homogeneous iff for all p with finite domain $\subset M$, whenever $\dim(p, M)$ is infinite $\dim(p, M) = |M|$. In §1 we prove this when p is SR. In §2 we prove that this is

sufficient to prove Theorem A. The recursive definability problem is discussed in §3.

§1. Dimensions of strongly regular types

This section is devoted to the proof of Theorem 6. In the first two lemmas, we show that if $p \in S(c)$ is SR via φ then there is a theory T' recursive in t(c) and containing a predicative I such that T' implies I is an infinite set of indiscernibles with average type SR via φ .

LEMMA 2. Let M and I be new unary predicate symbols, a a new constant and $L' = L \cup \{M, I, a\}$. There is an L'-theory T', recursive in T, such that if M, I, and a interpret M, I, and a in some model of T' then $M \models T$, $I \subseteq M$ is an infinite set of indiscernibles and t(a/M) = Av(I/M).

PROOF. We let T' consist of the union of the sentences expressing the following:

- (i) "M is a model of T",
- (ii) " $I \subset M$ is an infinite set of indiscernibles",
- (iii) $(\forall \bar{y} \in M)[\varphi(a, \bar{y}) \to \bigwedge_{k < \omega} (\exists x_0 \cdots x_{k-1} \in I)$ $(\bigwedge_{i < j < k} x_i \neq x_j \land \bigwedge_{i < k} \varphi(x_i, \bar{y}))];$ $\varphi(x, \bar{y}) \in L$

We leave it to the reader to check that T' has the properties claimed in the theorem.

LEMMA 3. Suppose $p \in S(c)$ is SR via φ . Let $L' \supseteq L$ contain new unary predicates M and N, a a new constant symbol and constants for c. Then there is an L'-theory T', recursive in t(c), such that if M and a interpret M and a in some model of T' then t(a/M) is SR via φ .

PROOF. Let T' consist of the sentences expressing

- (i) " $N \supset M$ are models of T(c), $c \in M$ ",
- (ii) $a \in N \setminus M$ and $\varphi(a)$,
- (iii) $(\forall b \in N \setminus M)[\varphi(b) \to \land_{\psi}(\forall \bar{y} \in M)(\psi(a, \bar{y}) \leftrightarrow \psi(b, \bar{y}))].$

The consistency of T' follows from the existence of a p such that p is SR via φ . It's not difficult to show T' has the desired properties.

As we remarked in the introduction, we cannot conclude directly that $t(a/M) = p \mid M$. Lemma 1 implies that if we want to ensure $a \downarrow_c M$, we need only require $t(a/M) \not\perp c$. Our experience has shown that for $I \subseteq M$ indiscernible we must have $Av(I/M) \not\perp c$ iff I is pairwise c-independent. This pairwise independent.

dence can be expressed with formulas. In the proof below we won't show that pairwise independence implies $Av(I/M) \not\perp c$; an easier argument contradicts $a \not\downarrow c M$; but Lemma 1 is the motivation behind the next two lemmas.

LEMMA 4. Let M be a model with $c \in M$ such that $p \in S(c)$ is SR via φ . Furthermore, suppose M contains a_0 , a_1 realizing p such that $a_0 \downarrow c_0$. Then there is a theory T', recursive in $t(a_0a_1c)$, containing a unary predicate I such that in any model of T' the interpretation I of I satisfies: (1) I is an infinite pairwise c-independent set of indiscernibles, (2) for some (hence, as easily seen, for all) $N \supset I$, Av(I/N) is SR via φ .

PROOF. This lemma follows by combining the previous two since we may express recursively in $t(a_0a_1c)$ that the 2-type realized by elements of I is $t(a_0a_1/c)$.

LEMMA 5. With notation as in Lemma 4, I is independent over c.

PROOF. The theory T' will contain symbols for models $N \supset M$, indiscernibles $I \subset M$ and $a \in N \setminus M$ such that $t(a/M) = \operatorname{Av}(I/M)$ is SR via φ . If T' doesn't imply I is c-independent we can add to T' a sentence implying that I isn't independent and obtain a model where M and N are \aleph_0 -saturated. To simplify notation assume $c = \emptyset$. Thus, we assume towards a contradiction we have M, N, I and a such that

- (i) $N \supset M$ are \aleph_0 -saturated models, $a \in N \setminus M$, $a \models p$,
- (ii) $I \subset M$ is an infinite pairwise independent set of indiscernibles which isn't independent,
- (iii) $t(a/M) = \operatorname{Av}(I/M)$ and for all $b \in N \setminus M$, $\varphi(b)$ implies t(b/M) = t(a/M). Let $\bar{b} \in I$ be such that t(a/M) is based on \bar{b} (see second remark on p. 89 in [9]). Notice that $I \setminus \bar{b}$ is a Morley sequence $t(a/\bar{b})$ and that if I_0 is a Morley sequence in $t(a/\bar{b})$ then $I_0 \cup \bar{b}$ is indiscernible. Let $\bar{d} \in N$ be such that

(1)
$$\bar{d} \stackrel{\circ}{=} \bar{b}(a)$$
 and $\bar{d} \downarrow_a \bar{b}$.

Since *I* is pairwise independent each $b_0 \in \bar{b}$ satisfies $b_0 \downarrow a$, hence each $d_0 \in \bar{d}$ also satisfies $d_0 \downarrow a$. By (1) and by transitivity of nonforking

(2) for all
$$d_0 \in \bar{d}$$
, $d_0 \downarrow \bar{b}$.

We want to show that $\bar{d} \not\in M$. To this end we claim $a \not\downarrow \bar{b} \bar{d}$. Suppose towards a contradiction that $a \downarrow \bar{b} \bar{d}$. Since $t(a/\bar{b}) = t(a/\bar{d})$ they have the same *U*-rank. Thus, $U(a/\bar{b}\bar{d}) = U(a/\bar{b}) = U(a/\bar{d})$ and we have $a \downarrow_{\bar{d}} \bar{b}$. Let J be an infinite

Morley sequence in $t(a/b\bar{d})$. Then J is also a Morley sequence in $t(a/b\bar{d})$ and $t(a/\bar{d})$. As we remarked above $J \cup \bar{d}$ will be indiscernible. J isn't independent over \varnothing so $J \not\downarrow d_0$ for each $d_0 \in \bar{d}$. However, since we assume $a \downarrow_{\bar{b}} \bar{d}$ we have $J \downarrow_{\bar{b}} \bar{d}$, in particular, $J \downarrow_{\bar{b}} d_0$. Combining this with (2) we obtain $J \downarrow d_0$, a contradiction which proves the claim.

The claim implies that $\bar{d} \not\in M$. Let $d_0 \in \bar{d}$ be such that $d_0 \in N \setminus M$. Then d_0 satisfies φ and by (2), $d_0 \downarrow \bar{b}$. This contradicts (ii) and (iii), proving the lemma.

THEOREM 6. Let M be a resplendent model with $c \in M$ and $p \in S(c)$ SR via φ such that M contains a_0 , a_1 realizing p with $a_0 \downarrow_c a_1$. Then $\dim(p, M) = |M|$.

PROOF. To the theory T' of Lemma 4, add a statement involving a new function symbol which implies I is equicardinal with the model. Lemma 5 implies I is independent over c witnessing that $\dim(p, M) = |M|$, where I interprets I in an expansion of M to a model of T'.

§2. Dimension and homogeneity

This section is devoted to a proof of Theorem A via Theorem 6. By way of motivation suppose the resplendent M is also \aleph_0 -saturated. Then Theorem 6 and the theory of regular and SR types developed in Section D of [5] will imply that M is saturated. (D.10 and D.17 are the crucial results.) In this section we relativize the results of D to \aleph_0 -homogeneous models in ω -stable theories. Throughout this discussion we let K be the class of \aleph_0 -homogeneous models realizing the same types as some given \aleph_0 -homogeneous model. As before T is ω -stable.

LEMMA 7. K has prime models over sets. That is, if A is a subset of some model in K then there is an $M \in K$ such that $A \subset M$ and whenever $N \in K$ and $N \supset A$, M can be embedded into N while fixing A.

PROOF. See [8] or in the recursively saturated case [3].

We'll call M above the K-prime model over A and use K-isolated for the corresponding notion of isolation. Specifically, we say a type $p \in S(A)$ is K-isolated if there is a finite $B \in A$ such that for all $M \in K$ containing $A, p \upharpoonright B$ is realized in M and for $a \in M$, $a \models p \upharpoonright B \Rightarrow a \models p$.

LEMMA 8. Suppose $M \subset N$ are in K. Then for all $b \in N \setminus M$ there is an infinite set of indiscernibles $I \subset M$ such that t(b/M) = Av(I/M).

PROOF. See [6] or [4].

DEFINITION. We say a model $M \in K$ is K-model homogeneous if whenever $N_i \subset M$, $|N_i| < |M|$ and $N_i \in K$ for i = 0, 1; $f: N_0 \simeq N_1$; and $p \in S(N_0)$ is realized in M; f(p) is also realized in M.

LEMMA 9. For $M \in K$ uncountable, M is homogeneous iff M is K-model homogeneous.

PROOF. The proof is essentially the same as the proof of lemma 9 in [1], substituting K-prime for prime.

LEMMA 10. Given $M \in K$ and $N \supset M$ K-prime over $M \cup a$ for some a there is $a \ \bar{c} \in N \setminus M$ such that (i) each c_i is SR over M, (ii) \bar{c} is M-independent, (iii) N is K-prime over $M \cup \bar{c}$. In particular, $t(a/M \cup \bar{c})$ is K-isolated.

PROOF. The proof of this lemma is almost identical to the proof of D.10. Notice that this is stronger than D.17 in requiring that \bar{c} be M-independent. This is possible since whenever $b, B \subset N$ are finite and $t(b/B) \vdash t(b/M \cup B)$ we conclude that $t(b/M \cup B)$ is K-isolated.

THEOREM 11. Suppose M is \aleph_0 -homogeneous and whenever p is an SR type over a subset of M with $\dim(p, M)$ infinite we have $\dim(p, M) = |M|$. Then M is homogeneous.

PROOF. Let K be the class of \mathbb{N}_0 -homogeneous models realizing the same types as M. Wlog, M is uncountable. By Lemma 9 it suffices to show M is K-model homogeneous. Let N_0 , N_1 , f and p be as in the definition of K-model homogeneity. Let $a \in M$ realize p. By Lemma 10 there is $\langle c_i \rangle_{i < n} \in M$ an N_0 -independent sequence of elements SR over N_0 such that $t(a/N_0 \cup \bar{c})$ is K-isolated. For i < n let q_i be an SR type over a finite subset of N_0 such that $t(c_i/N_0) = q_i \mid N_0$. By Lemma 8, q_i has infinite dimension in N_0 . Thus $f(q_i)$ has infinite dimension in N_1 . By hypothesis $\dim(f(q_i), M) = |M|$. Choose $\langle d_i \rangle_{i < n}$ as follows. Let $d_0 \in M$ realize $f(q_0) \mid N_1$. If d_0, \ldots, d_k have been chosen, let $d_{k+1} \in M$ realize $f(q_{k+1}) \mid N_1 d_0 \cdots d_k$. This is possible since $|N_1 d_0 \cdots d_k| < \dim(f(q_{k+1}), M)$. Thus, we have $\bar{d} \in M$ such that $f(t(\bar{c}/N_0)) = t(\bar{d}/N_1)$. Since $t(a/N_0 \cup \bar{c})$ is K-isolated, we can find $b \in M$ such that $f(t(a\bar{c}/N_0)) = t(b\bar{d}/N_1)$. Thus $b \models f(p)$, proving the theorem.

Combining Theorems 6 and 11 we obtain

THEOREM A. Every resplendent model of an ω -stable theory is homogeneous.

For applications of this theorem see section 4 of [1].

§3. Recursive definability

In the past there have been several different formulations of what it means for a stable theory to satisfy "recursive definability". The relative strengths of these notions are still unclear. Here we list a few possible definitions for ω -stable T.

RD0 (Buechler). For all finite c and $p \in S(c)$ stationary there is a map d from L-formulas to formulas over c such that (i) for all X containing c, $p \mid X$ is defined by d, (ii) d is recursive in t(ac) for some $a \models p$.

RD1 (Baldwin). For all a and c such that t(a/c) is stationary there is a recursive sequence $\{\Psi_k : k < \omega\}$ of Σ_1^1 formulas such that for all k, a' and $b_1, \ldots, b_k, \Psi_k(a', \bar{b}, a, \bar{c})$ holds iff (i) t(a/c) = t(a'/c) and (ii) $a' \downarrow_c \bar{b}$.

We say a type $p \in S(M)$ is finitely realized in M if for all $c \in M$, $p \upharpoonright c$ is realized in M.

RD2 (Knight [2]). Suppose M is recursively saturated and $p \in S(M)$ is finitely realized in M. Then there is a finite $c \in M$ such that for all $a \supset c$, $p \mid a$ is recursive in t(a).

RD3 (Knight-Lachlan [3]). Suppose M is recursively saturated and $p \in S(M)$ is finitely realized in M. Then there is a finite $c \in M$ and d a definition of p over c such that d is recursive in t(c).

The strongest of these notions is RD0. It will be true whenever the rank function $p, \varphi \to R(p, \varphi, 2)$ is recursive in t(ac). To indicate the strength of RD0 we will show it implies a variant of RD1; namely

RD1' Suppose p = t(a/c) is stationary. Then for all $k < \omega$ there is a Σ_1^1 formula Ψ_k over ac such that

- (i) $\{\Psi_k : k < \omega\}$ is recursive in T(ac),
- (ii) $\Psi_k(a',b)$ holds in the monster iff $t(a'/bc) = p \mid b$.

Suppose RD0 holds. For an arbitrary $k < \omega$ let $\{\varphi_j : j < \omega\}$ be a recursive list of formulas of the form $\varphi(x, y)$, where $y = y_1 \cdots y_k$. By RD0 the set $\{d\varphi_j : j < \omega\}$ is recursive in T(ac). Let $\Gamma(x, y)$ be the type recursive over ac expressing

- (1) $\psi(x,c) \leftrightarrow \psi(a,c); \psi \in L$,
- (2) $\varphi_i(x, y) \leftrightarrow d\varphi_i(y)$; $j < \omega$.

We can effectively find a Σ_1^1 formula Ψ_k which is equivalent to Γ on resplendent models (see proof #1 of III.1.9 in [7]). The set $\{\Psi_k : k < \omega\}$ witnesses RD1'. Proving RD0 \Rightarrow RD1 requires a little more about definitions.

Lemma 1.1 of [3] implies that RD2 and RD3 are equivalent. Combining this fact with Theorem A and lemma 3.3 of [2] proves

THEOREM B. If T is ω -stable, then RD3 holds.

Notice that Theorem B does not immediately imply RD0 or RD1. The best result appears to be the following theorem. That we can't necessarily choose e = c indicates why RD3 doesn't imply RD0.

THEOREM 12. Let T be ω -stable and $p \in S(c)$ stationary. Then there is a defining scheme d over c such that (i) for all A containing c d defines $p \mid A$ and (ii) for some $e \supset c$ d is recursive in t(e). Furthermore, we may choose e from any recursively saturated model M containing c and I an infinite Morley sequence in p.

PROOF. Let M be as in the statement of the theorem. Let $q = \operatorname{Av}(I/M)$. Then q is finitely realized in M so there is an $e \supset c$ such that q is defined over e by some d_0 recursive in t(e). Since q is based on c it's definable over c. Thus, for all φ , $d_0\varphi$ is equivalent to a formula over c. We define d, a map from formulas to formulas over c by: d is the first formula γ (in some list of formulas over c) such that $\nabla \bar{y}(\gamma(\bar{y},c) \leftrightarrow d_0\varphi(\bar{y},e))$. This statement appears to be recursive in t(e).

As was noted in theorem 4 of [1], d will satisfy (i).

REFERENCES

- 1. S. Buechler, Expansions of models of ω -stable theories, J. Symb. Logic 49 (1984), 98-105.
- 2. J. Knight, Theories whose resplendent models are homogeneous, Isr. J. Math. 42 (1982), 151-161.
 - 3. J. Knight and A. H. Lachlan, Recursive definability in ω -stable theories of finite rank, preprint.
 - 4. D. W. Kueker, Small extensions of countable models, J. Symb. Logic, to appear.
- 5. M. Makkai, A survey of basic stability theory, with particular emphasis on orthogonality and regular types, Isr. J. Math. 49 (1984), 181-238 (this issue).
 - 6. L. Mayer, On the number of homogeneous models of an ω -stable theory, manuscript.
- 7. J. Schlipf, A guide to the identification of admissible sets above structures, Ann. Math. Logic 12 (1977), 151-192.
 - 8. S. Shelah, Finite diagrams stable in power, Ann. Math. Logic 2 (1970), 79-118.
 - 9. S. Shelah, Classification Theory, North-Holland, 1978.

Institute for Advanced Studies

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL

Current address

DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF WISCONSIN
MILWAUKEE, WI 53201 USA